Introduction to the MuJoCo Simulator

Will C. Forte (will.c.forte@rutgers.edu)

Department of Mechanical Engineering Rutgers University–New Brunswick

> February 11, 2025 N2E Robotics

> > ・ロト ・四ト ・ヨト ・ヨト

æ

About Me

I am an undergraduate freshman in the Engineering Honors Academy and an aspiring roboticist. Currently, I work on legged robots and some simulations.

- 2023 Intern at an NJIT robotics lab
- 2024 Graduated high school
- 2024 Intern at Prof. Burlion's UAV lab
- 2025 Intern at Prof. Yi's legged robot lab

My personal project site is willcforte.com.

My Research Interests

- Bipedal and quadrupedal design/control
- UAV control
- Dynamical systems analysis
- Biomimetic design

Ben Katz' MIT Mini Cheetah inspired me to do robotics.

Fig. 3: CAD Diagram of a Mini Cheetah Leg. Ah/ad actuator is highlighted

< A > < E

Will C. Forte (Rutgers University)

Introduction to the MuJoCo Simulator

DIY 12-Motor Quadruped (Summer of 2023)

Will C. Forte (Rutgers University)

Introduction to the MuJoCo Simulator

February 11, 2025

4 / 28

My MuJoCo Simulation w/ QR

Why Simulate?

- You don't have to buy a robot
- Break things with no consequences
- Easier than a real experiment
- Accurate sensors & data collection
- It's fun!

What is MuJoCo?

MuJoCo is a robotics simulator developed by Emo Todorov of the University of Washington. It is maintained by Yuval Tassa's team at Google DeepMind. Its name is an acronym:

$MuJoCo \equiv Mu$ lti Joint (dynamics with) Contact

Of the current simulation options, I've found that MuJoCo is the easiest to use and demands the least computational power.

Today's Objective

We are going to create a 2-joint manipulator that can be commanded to a certain position or follow a trajectory using MuJoCo and its Python library.

Let's get started! Feel free to ask any questions you may have as we go along.

MuJoCo Simulation Example

Will C. Forte (Rutgers University)

Introduction to the MuJoCo Simulator

February 11, 2025

Downloading MuJoCo

MuJoCo can be installed from mujoco.org.

 Will C. Forte (Rutgers University)
 Introduction to the MuJoCo Simulator
 February 11, 2025

э

10 / 28

Opening the Simulate Environment

Open simulate.sh to start the environment.

We need an XML file to describe our robot's structure.

Will C. Forte (Rutgers University)

Introduction to the MuJoCo Simulator

February 11, 2025

Workshop Repository

https://github.com/willcforte/ Introduction-to-MuJoCo-Workshop/

Must be downloaded to your computer: git clone https://github.com/willcforte/ Introduction-to-MuJoCo-Workshop/

Workshop Files

You can follow along using the instructions in the exercises folder.

You can find the finished demo in the reference folder. A copy of this presentation is in the docs folder.

Background: Degrees of Freedom (DoFs)

What is a degree of freedom (DoF)?

Will C. Forte (Rutgers University)

Introduction to the MuJoCo Simulator

イロト 不得 トイヨト イヨト February 11, 2025

Creating Our Simulated World in XML

Start with ./exercises/2R_robotic_arm.xml To describe the hierarchical structure of a robot, MuJoCo uses XML, a format that uses angular brackets to nest elements within each other.

Exercise 1: Joints and Bodies in MuJoCo

The <worldbody> contains everything in our world. Within it, we can place invisible <body> elements.

In MuJoCo, a body can contain any of three things:

A <geometry>, i.e. the meshes that you can see 2. A<joint> which brings a degree of freedom to the body
 A child <body>, e.g. the next joint in the arm

Background: PID Control

$\begin{aligned} & \mathsf{PID Signal} \equiv P + I + D \\ & \equiv \mathsf{Proportional} + \mathsf{Integral} + \mathsf{Derivative} \\ & = k_p e(t) + k_i \int e(t) dt + k_d \frac{d}{dt} e(t) \end{aligned}$

Will C. Forte (Rutgers University)

Introduction to the MuJoCo Simulator

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 February 11, 2025

Exercise 2: Actuating Our Joints (Positional)

Positional servos are easy to use if you want to command a specific angle. Notice in the XML file that they even have a kp attribute. This is because the positional servo contains

its own controller that keeps it at a certain angle.

Demo: Controlling Actuators by GUI (Positional)

By uncommenting the <position> actuators, we can now control them in the GUI.

Will C. Forte (Rutgers University)

Introduction to the MuJoCo Simulator

✓ □ → < ≥ → < ≥ →</p>
February 11, 2025

Exercise 3: Actuating Our Joints (Motor)

Oftentimes in robotics, we use motors instead of positional servos. Motors apply accelerations, so we cannot control the

particular angle.

Demo: Controlling Actuators by GUI (Motor)

By uncommenting the <motor> actuators and commenting the <position> ones, we can control them in the GUI.

Exercise 4: Using MuJoCo with Python

Make sure you have these dependencies: wget, python3, git.

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025

イロト イヨト イヨト ・

Exercise 5: Controlling a Positional Trajectory Using PID

We will be using position_PID.py.

Try to experiment with different PID gains!

Will C. Forte (Rutgers University)

Introduction to the MuJoCo Simulator

Exercise 6: Controlling a Motor Trajectory Using PID

We will be using motor_PID.py

Try to experiment with different PID gains!

Will C. Forte (Rutgers University)

Introduction to the MuJoCo Simulator

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 February 11, 2025

How can We Improve This Program?

Consider how humans command robots to go to a certain *position*.

Robots, on the other hand, work best when given angles.

4 E N 4 E N

The Robot's Perspective

Current instruction method: we provide angles, which the robot uses to control itself.

State vector:

$$\vec{\mathsf{x}} = \begin{bmatrix} heta_1 \\ heta_2 \end{bmatrix}$$

The Human's Perspective

It would be more convenient for us to give a trajectory of positions.

$$\vec{r} = \begin{bmatrix} r_x \\ r_y \end{bmatrix}$$

Will C. Forte (Rutgers University)

Introduction to the MuJoCo Simulator

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Background: Inverse Kinematics

Going from positions to angles $(x \rightarrow \vec{r})$ is known as Inverse Kinematics.

Will C. Forte (Rutgers University)

Introduction to the MuJoCo Simulator

✓ □ > < ≥ > < ≥ >
February 11, 2025