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About Me

I am an undergraduate freshman in the Engineering
Honors Academy and an aspiring roboticist. Currently, I
work on legged robots and some simulations.

2023 – Intern at an NJIT robotics lab
2024 – Graduated high school
2024 – Intern at Prof. Burlion’s UAV lab
2025 – Intern at Prof. Yi’s legged robot lab

My personal project site is willcforte.com.
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My Research Interests
Bipedal and quadrupedal design/control
UAV control
Dynamical systems analysis
Biomimetic design

Ben Katz’ MIT Mini Cheetah inspired me to do robotics.
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DIY 12-Motor Quadruped (Summer of 2023)
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My MuJoCo Simulation w/ QR
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Why Simulate?

You don’t have to buy a robot
Break things with no consequences
Easier than a real experiment
Accurate sensors & data collection
It’s fun!
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What is MuJoCo?

MuJoCo is a robotics simulator developed by Emo
Todorov of the University of Washington. It is
maintained by Yuval Tassa’s team at Google DeepMind.
Its name is an acronym:

MuJoCo ≡ Multi Joint (dynamics with) Contact

Of the current simulation options, I’ve found that
MuJoCo is the easiest to use and demands the least
computational power.
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Today’s Objective

We are going to create a 2-joint manipulator that can be
commanded to a certain position or follow a trajectory
using MuJoCo and its Python library.

Let’s get started! Feel free to ask any questions you may
have as we go along.
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MuJoCo Simulation Example
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Downloading MuJoCo

MuJoCo can be installed from mujoco.org.
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Opening the Simulate Environment

Open simulate.sh to start the environment.

We need an XML file to describe our robot’s structure.
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Workshop Repository

https://github.com/willcforte/
Introduction-to-MuJoCo-Workshop/
Must be downloaded to your computer:
git clone https://github.com/willcforte/
Introduction-to-MuJoCo-Workshop/
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Workshop Files

You can follow along using the instructions in the
exercises folder.
You can find the finished demo in the reference folder.
A copy of this presentation is in the docs folder.

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 13 / 28



Background: Degrees of Freedom (DoFs)

What is a degree of freedom (DoF)?
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Creating Our Simulated World in XML

Start with ./exercises/2R_robotic_arm.xml
To describe the hierarchical structure of a robot,
MuJoCo uses XML, a format that uses angular brackets
to nest elements within each other.
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Exercise 1: Joints and Bodies in MuJoCo

The <worldbody> contains everything in our world.
Within it, we can place invisible <body> elements.

In MuJoCo, a body can contain any of three things:

1. A <geometry>, i.e. the meshes that you can see 2. A
<joint> which brings a degree of freedom to the body
3. A child <body>, e.g. the next joint in the arm
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Background: PID Control

PID Signal ≡ P + I + D
≡ Proportional + Integral + Derivative

= kpe(t) + ki
∫

e(t)dt + kd
d
dt e(t)
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Exercise 2: Actuating Our Joints
(Positional)

Positional servos are easy to use if you want to command
a specific angle.
Notice in the XML file that they even have a kp
attribute. This is because the positional servo contains
its own controller that keeps it at a certain angle.
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Demo: Controlling Actuators by GUI
(Positional)

By uncommenting the <position> actuators, we can
now control them in the GUI.
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Exercise 3: Actuating Our Joints (Motor)

Oftentimes in robotics, we use motors instead of
positional servos.
Motors apply accelerations, so we cannot control the
particular angle.
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Demo: Controlling Actuators by GUI
(Motor)

By uncommenting the <motor> actuators and
commenting the <position> ones, we can control them
in the GUI.
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Exercise 4: Using MuJoCo with Python

Make sure you have these dependencies: wget, python3,
git.
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Exercise 5: Controlling a Positional
Trajectory Using PID

We will be using position_PID.py.

Try to experiment with different PID gains!
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Exercise 6: Controlling a Motor Trajectory
Using PID

We will be using motor_PID.py

Try to experiment with different PID gains!
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How can We Improve This Program?

Consider how humans command robots to go to a
certain position.

Robots, on the other hand, work best when given angles.
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The Robot’s Perspective

Current instruction method: we provide angles, which
the robot uses to control itself.

State vector:

x⃗ =
θ1
θ2
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The Human’s Perspective

It would be more convenient for us to give a trajectory of
positions.

r⃗ =
rx
ry
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Background: Inverse Kinematics

Going from positions to angles (x → r⃗) is known as
Inverse Kinematics.
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