
Introduction to the
MuJoCo Simulator

Will C. Forte
(will.c.forte@rutgers.edu)

Department of Mechanical Engineering
Rutgers University–New Brunswick

February 11, 2025
N2E Robotics



About Me

I am an undergraduate freshman in the Engineering
Honors Academy and an aspiring roboticist. Currently, I
work on legged robots and some simulations.

2023 – Intern at an NJIT robotics lab
2024 – Graduated high school
2024 – Intern at Prof. Burlion’s UAV lab
2025 – Intern at Prof. Yi’s legged robot lab

My personal project site is willcforte.com.

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 2 / 28



My Research Interests
Bipedal and quadrupedal design/control
UAV control
Dynamical systems analysis
Biomimetic design

Ben Katz’ MIT Mini Cheetah inspired me to do robotics.

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 3 / 28



DIY 12-Motor Quadruped (Summer of 2023)

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 4 / 28



My MuJoCo Simulation w/ QR

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 5 / 28



Why Simulate?

You don’t have to buy a robot
Break things with no consequences
Easier than a real experiment
Accurate sensors & data collection
It’s fun!

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 6 / 28



What is MuJoCo?

MuJoCo is a robotics simulator developed by Emo
Todorov of the University of Washington. It is
maintained by Yuval Tassa’s team at Google DeepMind.
Its name is an acronym:

MuJoCo ≡ Multi Joint (dynamics with) Contact

Of the current simulation options, I’ve found that
MuJoCo is the easiest to use and demands the least
computational power.

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 7 / 28



Today’s Objective

We are going to create a 2-joint manipulator that can be
commanded to a certain position or follow a trajectory
using MuJoCo and its Python library.

Let’s get started! Feel free to ask any questions you may
have as we go along.

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 8 / 28



MuJoCo Simulation Example

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 9 / 28



Downloading MuJoCo

MuJoCo can be installed from mujoco.org.

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 10 / 28



Opening the Simulate Environment

Open simulate.sh to start the environment.

We need an XML file to describe our robot’s structure.

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 11 / 28



Workshop Repository

https://github.com/willcforte/
Introduction-to-MuJoCo-Workshop/
Must be downloaded to your computer:
git clone https://github.com/willcforte/
Introduction-to-MuJoCo-Workshop/
Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 12 / 28



Workshop Files

You can follow along using the instructions in the
exercises folder.
You can find the finished demo in the reference folder.
A copy of this presentation is in the docs folder.

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 13 / 28



Background: Degrees of Freedom (DoFs)

What is a degree of freedom (DoF)?

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 14 / 28



Creating Our Simulated World in XML

Start with ./exercises/2R_robotic_arm.xml
To describe the hierarchical structure of a robot,
MuJoCo uses XML, a format that uses angular brackets
to nest elements within each other.

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 15 / 28



Exercise 1: Joints and Bodies in MuJoCo

The <worldbody> contains everything in our world.
Within it, we can place invisible <body> elements.

In MuJoCo, a body can contain any of three things:

1. A <geometry>, i.e. the meshes that you can see 2. A
<joint> which brings a degree of freedom to the body
3. A child <body>, e.g. the next joint in the arm

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 16 / 28



Background: PID Control

PID Signal ≡ P + I + D
≡ Proportional + Integral + Derivative

= kpe(t) + ki
∫

e(t)dt + kd
d
dt e(t)

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 17 / 28



Exercise 2: Actuating Our Joints
(Positional)

Positional servos are easy to use if you want to command
a specific angle.
Notice in the XML file that they even have a kp
attribute. This is because the positional servo contains
its own controller that keeps it at a certain angle.

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 18 / 28



Demo: Controlling Actuators by GUI
(Positional)

By uncommenting the <position> actuators, we can
now control them in the GUI.

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 19 / 28



Exercise 3: Actuating Our Joints (Motor)

Oftentimes in robotics, we use motors instead of
positional servos.
Motors apply accelerations, so we cannot control the
particular angle.

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 20 / 28



Demo: Controlling Actuators by GUI
(Motor)

By uncommenting the <motor> actuators and
commenting the <position> ones, we can control them
in the GUI.

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 21 / 28



Exercise 4: Using MuJoCo with Python

Make sure you have these dependencies: wget, python3,
git.

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 22 / 28



Exercise 5: Controlling a Positional
Trajectory Using PID

We will be using position_PID.py.

Try to experiment with different PID gains!

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 23 / 28



Exercise 6: Controlling a Motor Trajectory
Using PID

We will be using motor_PID.py

Try to experiment with different PID gains!

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 24 / 28



How can We Improve This Program?

Consider how humans command robots to go to a
certain position.

Robots, on the other hand, work best when given angles.

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 25 / 28



The Robot’s Perspective

Current instruction method: we provide angles, which
the robot uses to control itself.

State vector:

x⃗ =
θ1
θ2



Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 26 / 28



The Human’s Perspective

It would be more convenient for us to give a trajectory of
positions.

r⃗ =
rx
ry



Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 27 / 28



Background: Inverse Kinematics

Going from positions to angles (x → r⃗) is known as
Inverse Kinematics.

Will C. Forte (Rutgers University) Introduction to the MuJoCo Simulator February 11, 2025 28 / 28


